Abstract

We have investigated the dynamics of bright solitons in a spin–orbit coupled spin-1 Bose–Einstein condensate analytically and numerically. By using the hyperbolic sine function as the trial function to describe a plane wave bright soliton with a single finite momentum, we have derived the motion equations of soliton’s spin and center of mass, and obtained its exact analytical solutions. Our results show that the spin–orbit coupling couples the soliton’s spin with its center-of-mass motion, the spin oscillations induced by the exchange of atoms between components result in the periodical oscillation of center-of-mass, and the motion of center of mass of soliton can be viewed as a superposition of periodical and linear motions. Our analytical results have also been confirmed by the direct numerical simulations of Gross–Pitaevskii equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call