Abstract

The significance of bacterioplankton in the flow of carbon and energy and in trophic dynamics of the upper Laguna Madre, Texas (USA), was estimated by measuring bacterioplankton abundance and production over an 18 mo period and over several diel cycles. Bacterioplankton production was estimated from incorporation rates of thymidine (DNA synthesis) and leucine (protein synthesis). These independent inhces of bacterial growth were generally in agreement and yielded nearly identical annual estimates of bacterial production (25.24 g C m-2 yr-' based on thymidine and 25.12 g C m-' yr-I based on leucine). Assuming a 30 % growth efficiency, the annual bacterioplankton growth could be supported by 15 % of the total primary production (seagrasses and phytoplankton), 17 % of the above-ground production of the dominant seagrass, Halodule wrigh~, or 103 % of the phytoplankton production. Bactenal abundance was high throughout the year, often exceeding 1 X 10'' cells I' . Bacterioplankton production varied seasonally and over the diel cycle, with maximal values during warmer months and dunng daytime. Although changes in water temperature could account for some of this variation, shifts in the quantity and quality of the organic substrates supporting bacterial growth appeared to be the major factors regulating the variations in bacterioplankton production. Bacterioplankton in the Laguna Madre are a large and rapidly growing source of biomass potentially available for higher trophic levels. If this biomass is efficiently used by grazers, bacteria may be a major 'link' between seagrass production and secondary producers in the Laguna Madre ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.