Abstract

Phytoplankton are the major primary producers in the pelagic system. They greatly influence biogeochemical cycles but little is known about the importance of shifting phytoplankton community composition for carbon dynamics. This study investigates the impact of seasonal changes in coastal phytoplankton communities on pelagic carbon fluxes. A field sampling campaign, covering an annual cycle in primary production, was conducted to assess the seasonal changes of phytoplankton communities and relevant organic carbon parameters in the coastal Baltic Sea. The monitoring frequency ranged from 1 to 3 wk, adapted to match the seasonal phytoplankton blooms. In addition, sediment traps were deployed to determine the particulate carbon and nutrient export to the seafloor in every season. We found that the phytoplankton biomass during the spring bloom was as high as 550 µg C l-1 and was dominated by diatom species (88% of total phytoplankton biomass). In comparison, the more species-rich summer bloom reached a combined maximum biomass of 236 µg C l-1. However, the highest export flux of particulate organic carbon was found in the middle of August (561 mmol C m-2 d-1) and, not as expected, around the spring bloom in May (226 mmol C m-2 d-1), suggesting a high potential for carbon recycling within the pelagic food web rather than being exported to the seafloor or advected laterally. Our study emphasizes the importance of keystone species and diversity for carbon transport processes in marine coastal ecosystems and highlights complex relationships between phytoplankton biomass production, community composition and carbon dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.