Abstract
Bacterial response to alteration in C availability is important in understanding the microbial community structure and microbial interactions in soil ecosystems. Population dynamics of oligotrophic and copiotrophic bacteria in relation to soil C availability were examined and relationships between bacterial populations and water-extractable C, buffer-extractable C, mineralizable C or microbial biomass C were investigated. Both copiotrophs and oligotrophs were significantly stimulated by newly added C in the form of cover crop debris, but copiotrophs rapidly peaked at the very early stage of cover crop decomposition while peak populations of oligotrophs occurred at a later stage when available C decreased. Despite significant correlations between mineralizable C and water soluble C or buffer soluble C, dynamics of both copiotrophic and oligotrophic bacteria was best related to mineralizable C pool. Copiotrophs were logarithmically correlated to mineralizable C ( p < 0.0001), while oligotrophs were quadratically related to mineralizable C ( p < 0.0001), which is, to our knowledge, the first report showing that high C availability may have inhibited oligotrophs in natural soils. Oligotrophs were not significantly correlated to microbial biomass C, suggesting that oligotrophs only contributed a minor part to the soil microbial biomass pool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.