Abstract

Sprouts are considered a healthy ready-to-eat food and has gained popularity in recent years. The objective of the present study was to determine the dynamics of sprouts' microbiome during cold storage to the end of their shelf-life at home. The microbiological quality of fresh alfalfa (Medicago sativa) and mung bean (Vigna radiata) sprouts from two commercial brands was tested and the number of APC ranges from 5.0 to 8.7 log CFU/g in alfalfa and 6.7 to 9.3 log CFU/g in mung bean sprouts. In the case of alfalfa, but not mung beans, there were differences in the mean numbers of APC between the two brands. The number of coliform bacteria ranges from 4.3 to 7.7 log CFU/g in alfalfa and 4.1 to 8.1 log CFU/g in mung bean sprouts. Four independent batches of sprouts were used for DNA preparation and were sampled immediately after purchase and once a week during subsequent storage in refrigerator until the end of their shelf-life. Microbial population of the sprouts was determined using next generation sequencing of 16S rRNA amplicons. Alfalfa sprouts were dominated by Pseudomonas throughout the storage time with relative abundance of >60% at 3 weeks. Fresh mung bean sprouts were dominated by both Pseudomonas and Pantoea, but Pantoea became the dominant taxa after 2 weeks of storage, with >46% of relative abundance. The bacterial communities associated with sprouts were largely dependent on the sprout type, and less dependent on the brand. The species richness and diversity declined during storage and the development of spoilage. Among the 160 genera identified on sprouts, 23 were reported to contain known spoilage-associated species and 30 genera comprise potential human pathogenic species. This study provides new insight into the microbiome dynamics of alfalfa and mung bean sprouts during cold storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.