Abstract
New firing patterns, composed of a stochastic alternation of two periodic bursts, were generated near each bifurcation point of period adding bifurcation scenario without chaos in the experimental neural pacemaker, in the stochastic Chay model but not in the deterministic model. It was a stochastic transition between two neighboring bursting and exhibited approximate integer multiple characteristics. Autonomous stochastic resonance (ASR) was verified to be the cause of the generation of this stochastic alternation pattern in the stochastic Chay model. The stochastic transition between two periodic superthreshold bursts generated near a critical phase in the two trajectories was the underlying basis of the effect of ASR. The results showed that except the Hopf bifurcation point, ASR could be generated in a series of period adding bifurcation points, and indicated that noise played more extensive roles in neural coding than recognized before.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.