Abstract
In temperate forest ecosystems, soil acts as a major sink for atmospheric N deposition. A (15)N labeling experiment in a hardwood forest on calcareous fluvisol was performed to study the processes involved. Low amounts of ammonium ((15)NH(4)(+)) or nitrate ((15)NO(3)(-)) were added to small plots. Soil samples were taken after periods ranging from 1 h to 1 yr. After 1 d, the litter layer retained approximately 28% of the (15)NH(4)(+) tracer and 19% of (15)NO(3)(-). The major fraction of deposited N went through the litter layer to reach the soil within the first hours following the tracer application. During the first day, a decrease in extractable (15)N in the soil was observed ((15)NH(4)(+): 50 to 5%; (15)NO(3)(-): 60 to 12%). During the same time, the amount of microbial (15)N remained almost constant and the (15)N immobilized in the soil (i.e., total (15)N recovered in the bulk soil minus extractable (15)N minus microbial (15)N) also decreased. Such results can therefore be understood as a net loss of (15)N from the soil. Such N loss is probably explained by NO(3)(-) leaching, which is enhanced by the well-developed soil structure. We presume that the N immobilization mainly occurs as an incorporation of deposited N into the soil organic matter. One year after the (15)N addition, recovery rates were similar and approximately three-quarters of the deposited N was recovered in the soil. We conclude that the processes relevant for the fate of atmospherically deposited N take place rapidly and that N recycling within the microbes-plants-soil organic matter (SOM) system prevents further losses in the long term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.