Abstract

This paper presents vibration analysis of an autoparametric pendulum‐like mechanism subjected to harmonic excitation. To improve dynamics and control motions, a new suspension composed of a semiactive magnetorheological damper and a nonlinear spring is applied. The influence of essential parameters such as the nonlinear damping or stiffness on vibration, near the main parametric resonance region, are carried out numerically and next verified experimentally in a special experimental rig. Results show that the magnetorheological damper, together with the nonlinear spring can be efficiently used to change the dynamic behaviour of the system. Furthermore, the nonlinear elements applied in the suspension of the autoparametric system allow to reduce the unstable areas and chaotic or rotating motion of the pendulum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.