Abstract
It is shown that the development of instabilities in a Z-pinch plasma formed by loading a relatively thick Al wire (an initial diameter of 120 µm and a maximum discharge current of 2–3 MA) is slowed down due to the high plasma density in the wire corona. A cylindrically symmetric, regular, and stable corona surrounding the wire contains a helical formation with a dense, cold, and magnetized plasma. X-ray pulses with a photon energy of several keV and an FWHM duration of 10–20 ns are generated by a few imploded neck structures in the pinch phase of the corona evolution (70–100 ns after the current onset). The main part of X radiation emitted by individual bright spots in the photon energy range 1.5–2.4 keV (up to 40 J at a peak power of 4 GW) consists of the continuum and the bound-bound transition radiation from H-and He-like Al ions. A possible scenario for the axial magnetic field evolution during an X-ray pulse is outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.