Abstract
The first hard X-ray free electron laser (XFEL) facility in China, the Shanghai High-Repetition-Rate XFEL and Extreme Light Facility (SHINE), is under construction, which allows for generating X-ray pulses in the photon energy range from 3 keV to 25 keV. To produce X-ray pulses with photon energy up to 25 keV, FEL-III undulator line of SHINE employs superconducting undulators. However, the smaller gap of the superconducting undulator poses serious wakefield effect reducing the FEL power, compared to the normal planar undulator. For a setup design optimization, the design and performance of the FEL-III undulator line are presented using start-to-end beam simulations at self-amplified spontaneous emission (SASE) and self-seeding mode. The wakefield impact on FEL performance is then investigated. A linear undulator tapering technique is adopted for recovering the FEL power to the non-wakefield level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.