Abstract

A mathematical model, which describes the dynamics of acutely irradiated skin epidermal epithelium in swine, is developed. This model embodies the key mechanisms of regulation of skin epidermal epithelium and the principal stages of development of its cells (basal, prickle, and corneal). The model is implemented as a system of nonlinear ordinary differential equations, whose variables and parameters have clear biological meaning. The modeling results for the dose- and time-dependent changes in basal and prickle cell populations are in a good agreement with relevant experimental data. The correlation between the experimental data on the dynamics of moist reaction in acutely irradiated swine skin epidermal epithelium and the corresponding modeling results on the dynamics of corneal cells is revealed. Proceeding from this, the threshold level of corneal cells, which indicates the appearance of the moist reaction, is found. All this bears witness to the validity of employment of the developed model, after appropriate identification, in the investigation and prediction of radiation effects on skin epidermal epithelium in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.