Abstract
Rapidly identifying individuals who have received internal radiation exposure above action guidelines is crucial for mitigating health risks and addressing public concerns immediately following a radiological event involving the dispersal of radioactive materials. This study describes a novel triage method using a conventional Geiger-Mueller (GM) detector to select those individuals from the large group of persons who may have received an intake of radioactive material at levels corresponding to one Clinical Decision Guide (CDG). The triage method involves placing a portable GM detector against the lower anterior torso of a sitting person as they bend over to surround the detector with their body. The response of the GM detector is evaluated using a new, specially designed anthropometric phantom that simulates combined tissues of the lower thorax and gastrointestinal (GI) tract and is fabricated with a tissue substitute material that matches the overall radiological properties of human tissue present in this body region. The phantom has four separate layers of tissue substitute material with ports to accommodate a single GM detector at the center and one or more sealed radioactive sources that can be arranged to characterize the detector response for a variety of source distributions, including a "hot spot." In this study, the response of a Ludlum Model 133-4 GM detector was evaluated using sealed sources of 232Th and 137Cs to determine the measurement efficiency for a quantity of activity present in the abdomen within a few hours post-intake equivalent to 1 CDG. Results demonstrate that the Quick Sort triage procedure using a single GM detector placed against the abdomen of a person can reliably detect internal deposition resulting from an intake equivalent to 1 CDG for 232Th or a significantly lower activity of 137Cs within a few hours following a radiological incident. The evaluation was performed over a wide range of photon energies, so the Quick Sort triage procedure is expected to be suitable for most fission products distributed uniformly within the abdomen or as a single "hot spot."
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have