Abstract

The present experimental study investigated the dynamics of single- and multi-port gaseous jet diffusion flames exposed to acoustic excitation via a standing wave situated in a closed waveguide at atmospheric pressure. High-speed imaging of the oscillatory flame was analysed via proper orthogonal decomposition (POD), revealing distinct signatures in both mode shapes and phase portraits for transitions in the acoustically coupled combustion process. For Reynolds numbers between 20 and 100, and for low to moderate forcing amplitudes, the flame exhibited sustained oscillatory combustion (SOC) that was highly coupled to the acoustic forcing. Frequency analysis of the temporal POD modes accurately recovered the forcing frequency and its higher harmonics. At higher forcing amplitudes, a multi-frequency response was observed, resulting from a combination of the forcing frequency and much lower frequency oscillations due to periodic lift-off and reattachment (PLOR) of the flame, preceding a transition to flame blow-off (BO). For both single- and triple-jet flames, transitions from SOC to PLOR to BO were characterized by significant alterations in primary modal energetic content, deflection and eventual smearing in phase portraits, and the development of additional frequencies in modal spectra, although transitional behaviour for the triple jet flames involved additional complexity in the dynamics due to its structure. These features provide the potential for the development of reduced-order models that can characterize and predict acoustically coupled combustion behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.