Abstract

In this paper, we formulate a mathematical model to study the dynamics of submerged and inclined concentric pipes with different lengths. The governing equations of motion for the inner pipe are derived under small deformation assumptions and with the consideration of gravitational forces, turbulent boundary layer thickness of external flow, fluid frictional forces, and inertia effects. We obtain discretized dynamical equations using spatial finite-difference schemes and calculate the resonant frequencies of a particular pipe system design. In addition, by varying the operating conditions, we identify a few critical parameters pertaining to the proper design of such pipe systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.