Abstract

We investigate the dynamics of three ring-coupled double-well Duffing oscillators modelled by fractional-order differential equations. The analysis of time series, Fourier spectra, phase portraits, Poincaré sections, and Lyapunov exponents using the fractional order and the coupling strength as control parameters, shows that the dynamics of such system is much richer than that of the system with integer order. We demonstrate the appearance of multistability and a rotating wave when either the fractional derivative index or the coupling strength is increased, on the route from a stable steady-state regime to hyperchaos through a Hopf bifurcation and a cascade of torus bifurcations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.