Abstract
In this paper, we consider a single-species reaction–diffusion–advection population model with nonlinear boundary condition in heterogenous space. We not only investigate the existence, nonexistence and stability of positive steady-state solutions through a linear elliptic eigenvalue problem by means of variational approach, but also verify the existence of steady-state bifurcations at zero solution through Crandall and Robinowitz bifurcation theory and discuss the stability of bifurcations, which can lead to Allee effect when the bifurcation is subcritical.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have