Abstract

A Leslie–Gower predator–prey model with square root response function and generalist predator is considered, and the existence and stability of equilibria of the system are discussed. It is shown that the system undergoes a degenerate Hopf bifurcation of codimension exactly two, where there exist two limit cycles. In addition, we find that the system has a cusp of codimension two and exhibits a Bogdanov–Takens bifurcation of codimension two. Our results reveal richer dynamics than the system with no generalist predator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.