Abstract
In this paper a mechanical system consisting of a chain of masses connected by nonlinear springs and a pantographic microstructure is studied. A homogenized form of the energy is justified through a standard passage from finite differences involving the characteristic length to partial derivatives. The corresponding continuous motion equation, which is a nonlinear fourth-order PDE, is investigated. Traveling wave solutions are imposed and quasi-soliton solutions are found and numerically compared with the motion of the system resulting from a generic perturbation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.