Abstract

The SARS-CoV-2 pandemic has highlighted the importance of behavioral drivers in epidemic dynamics. With the relaxation of mandated nonpharmaceutical interventions (NPIs) formerly in place to decrease transmission, such as mask-wearing or social distancing, adherence to an NPI is now the result of individual decision-making. To study these coupled dynamics, we embed a game-theoretic model for individual NPI adherence within an epidemiological model. When the disease is endemic, we find that our model has multiple (but none concurrently stable) equilibria: one each with zero, complete, or partial NPI adherence. Surprisingly, for the equilibrium with partial NPI adherence, the number of infections is independent of the transmission rate. Therefore, in that regime, a change in the rate of pathogen transmission, e.g., due to another (mandated) NPI or a new variant, has no effect on endemic infection levels. On the other hand, we show that vaccination successfully decreases endemic infection levels, and, unexpectedly, also reduces the number of susceptibles at equilibrium when there is partial adherence. From a game-theoretic perspective, we find that highly effective NPIs lead at most to partial adherence. As this effectiveness decreases, partially effective NPIs initially lead to increases in population-level adherence, especially if the risk is high enough. However, a completely ineffective NPI results in no adherence. Furthermore, we identify parameter regions where the individual incentives may not align with those of society as a whole. Overall, our findings illustrate complexities that can arise due to behavioral-epidemiological feedback and suggest appropriate measures to avoid more pessimistic population-level outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call