Abstract

Experiments and numerical modelling on two different class B lasers that are subjected to external optical light injection are presented. This presentation includes ways of measuring the changes in the laser output, how to numerically describe the systems and how to construct diagrams of the dynamical states in the plane frequency detuning between lasers and injection strength. The scenarios for the semiconductor laser include an area of frequency locking and islands of chaotic behaviour embedded in and mixed with periodic doubling regimes. Using a rate equation model, the largest Lyapunov exponent is calculated as a measure of the stability of equilibriums and the amount of chaos in chaotic regimes. In the solid-state laser case, different dynamical regions were clearly observed. The found boundaries were identified experimentally, using an identification method, and numerically, from bifurcation analysis, as Hopf, saddle-node, period-doubling and torus bifurcations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call