Abstract
AbstractA major winter storm took place over Mexico during 7 to 11 March 2016, impacting 28 states and leaving four million families without power. Extensive agricultural damage and livestock deaths were also reported with widespread snow across central and northern Mexico. North of the border, this system resulted in record-breaking flooding and severe weather in Texas and Louisiana. The event was due to a trough that deepened and cut off over central Mexico with 500-hPa heights that were nine standard deviations below normal, well beyond previous records! Motivated by the societal impacts of this event, this study investigates factors that contributed to the extreme trough and influenced its predictability in forecast models. A strong El Niño provided the antecedent conditions, with enhanced tropical convection over the central Pacific, a strengthened subtropical anticyclone, and poleward Rossby wave dispersion. However, unlike past strong El Niños, the North Pacific preceding this event was characterized by significant synoptic-scale Rossby wave activity on the midlatitude jet stream including multiple wave packets tracking around the globe during February and March. The interaction of one of these packets with the subtropical anticyclone aloft resulted in a large anticyclonic wave break over the east Pacific, leading to the amplification of the downstream trough over Mexico. The ability of numerical weather prediction to capture this extreme trough is directly related to the predictability of the Rossby wave packet. These results are also discussed within the context of the relationship between El Niño, Rossby wave activity, and extreme events in western North America.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have