Abstract

Comparing the recoil energy distributions of the fragments from one-photon dissociation of phenol-d(5) with those from vibrationally mediated photodissociation shows that initial vibrational excitation strongly influences the disposal of energy into relative translation. The measurements use velocity map ion imaging to detect the H-atom fragments and determine the distribution of recoil energies. Dissociation of phenol-d(5) molecules with an initially excited O-H stretching vibration produces significantly more fragments with low recoil energies than does one-photon dissociation at the same total energy. The difference appears to come from the increased probability of adiabatic dissociation in which a vibrationally excited molecule passes around the conical intersection between the dissociative state and the ground state to produce electronically excited phenoxyl-d(5) radicals. The additional energy deposited in electronic excitation of the radical reduces the energy available for relative translation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call