Abstract

Both experiment and theory recently showed that the H + D2(v = 0, j = 0) → HD(v' = 4, j') + D reactions at a collision energy of 1.97 eV display a seemingly anomalous HD product angular distribution that moves in the backward direction as the value of j' increases and the corresponding energy available for product recoil decreases. This behavior was attributed to the presence of a centrifugal barrier along the reaction path. Here, we show, using fully quantum mechanical calculations, that for low recoil energies, the collision mechanism is nearly independent of the HD internal state and the HD product becomes aligned, with its rotational angular momentum j' pointing perpendicular to the recoil momentum k'. As the kinetic energy to overcome this barrier becomes limited, the three atoms adopt a nearly collinear configuration in the transition-state region to permit reaction, which strongly polarizes the resulting HD product. These results are expected to be general for any chemical reaction in the low recoil energy limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.