Abstract

The stability and dynamics of a new class of periodic solutions is investigated when a degenerate optical parametric oscillator system is forced by an external pumping field with a periodic spatial profile modeled by Jacobi elliptic functions. Both sinusoidal behavior as well as localized hyperbolic (front and pulse) behavior can be considered in this model. The stability and bifurcation behaviors of these transverse electromagnetic structures are studied numerically. The periodic solutions are shown to be stabilized by the nonlinear parametric interaction between the pump and signal fields interacting with the cavity diffraction, attenuation, and periodic external pumping. Specifically, sinusoidal solutions result in robust and stable configurations while well-separated and more localized field structures often undergo bifurcation to new steady-state solutions having the same period as the external forcing. Extensive numerical simulations and studies of the solutions are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.