Abstract
Using molecular dynamics simulations, we study dynamics of a model polymer melt composed of short chains with bead number N=10 in supercooled states. In quiescent conditions, the stress relaxation function G(t) is calculated, which exhibits a stretched exponential relaxation on the time scale of the α relaxation time τα and ultimately follows the Rouse dynamics characterized by the time τR∼N2τα. After application of shear γ̇, transient stress growth σxy(t)/γ̇ first obeys the linear growth ∫0tdt′G(t′) for strain less than 0.1 but saturates into a non-Newtonian viscosity for larger strain. In steady states, shear thinning and elongation of chains into ellipsoidal shapes take place for shear γ̇ larger than τR−1. In such strong shear, we find that the chains undergo random tumbling motion taking stretched and compact shapes alternatively. We examine the validity of the stress–optical relation between the anisotropic parts of the stress tensor and the dielectric tensor, which are violated in transient states due to the presence of a large glassy component of the stress. We furthermore introduce time-correlation functions in shear to calculate the shear-dependent relaxation times, τα(T,γ̇) and τR(T,γ̇), which decrease nonlinearly as functions of γ̇ in the shear-thinning regime.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have