Abstract
<abstract><p>In this paper, we proposed a generalized mosquito-borne epidemic model with a general nonlinear incidence rate, which was studied from both deterministic and stochastic insights. In the deterministic model, we proved that the endemic equilibrium was globally asymptotically stable when the basic reproduction number $ R_0 $ was greater than unity and the disease free equilibrium was globally asymptotically stable when $ R_0 $ was lower than unity. In addition, considering the effect of environmental noise on the spread of infectious diseases, we developed a stochastic model in which the infection rates were assumed to satisfy the mean-reverting log-normal Ornstein-Uhlenbeck process. For this stochastic model, two critical values, known as $ R_0^s $ and $ R_0^E $, were introduced to determine whether the disease will persist or die out. Additionally, the exact probability density function of the stationary distribution near the quasi-equilibrium point was obtained. Numerical simulations were conducted to validate the results obtained and to examine the impact of stochastic perturbations on the model.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.