Abstract
In differential drive robots, wheel slip severely affects the ability to track a desired motion trajectory and the problem is exacerbated when differential drive robots are used in applications involving coordination of multiple robots. This problem is investigated and, based on the wheel–ground traction forces, a simple slip avoidance control strategy is discussed. Differential drive robots with two driven wheels and one or more ball-type caster wheels are considered. The traction forces between the wheels and the ground surface are determined by assuming rigid wheel, rigid ground interaction. These traction forces are used to determine the maximum value of the input wheel torque that can be applied on the wheel before it slips. To avoid wheel slip, this limiting torque value is used to set a saturation limit for the input torque computed by a trajectory tracking controller. Stability of the closed-loop system with the slip avoidance strategy is shown. Experiments are conducted with this strategy using a single robot as well as multiple robots in a platoon. A representative sample of the experimental results is presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.