Abstract

Advances in the synthesis, growth, and characterization of complex transition metal oxides coupled with new experimental techniques in ultrafast optical spectroscopy have ushered in an exciting era of dynamics and control in these materials. Experiments utilizing femtosecond optical pulses can initiate and probe dynamics of the spin, lattice, orbital, and charge degrees of freedom. Major goals include (a) determining how interaction and competition between the relevant degrees of freedom determine macroscopic functionality in transition metal oxides (TMOs) and (b) searching for hidden phases in TMOs by controlling dynamic trajectories in a complex and pliable energy landscape. Advances in creating intense pulses from the far-IR spectrum through the visible spectrum enable mode-selective excitation to facilitate exploration of these possibilities. This review covers recent developments in this emerging field and presents examples that include the cuprates, manganites, and vanadates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call