Abstract

The swimbladder system of the plainfin midshipman consists of a gas-filled bladder and two intrinsic sonic muscles which are attached to the bladder at opposite sides. An experimental and analytical study was conducted to define the physical characteristics of this dynamic system, and to relate these characteristics to radiated acoustical pressure pulses. Results indicate that the system has two degrees of freedom, being comprised of two inertial, stiffness and damping components; the first and second mode components of a 23.1-centimeter midshipman are 0.002 and 0.019 kg (inertial) 2130 and 106,000 newtons per meter (stiffness) and 0.25 and 0.10 (damping) respectively. This system is excited by the sonic muscle forcing function which equals \documentclass{article}\pagestyle{empty}\begin{document}$ 0.00236{\rm}\sin \frac{{2\pi {\rm t}}}{{0.0045{\rm}\sec}}{\rm newtons}. $\end{document} Two system frequency response peaks were observed; the first was 110 hertz, at the flat section next to the sonic muscle, and was very near the repetition frequency of the sonic muscle pulses; the second was 350 hertz, at the hemispherical section, which was the frequency of the acoustical pressure pulse. These phenomena describe a dynamical system closely "tuned" to its forcing function, and a system which is highly responsive to acoustical pressure pulses radiated by neighboring midshipmen. The acoustical pressure pulse coincides in wave form with the hemispherical bladder wall acceleration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.