Abstract

We propose and study a class of discrete-time commensalism systems with additive Allee effects on the host species. First, the single species with additive Allee effects is analyzed for existence and stability, then the existence of fixed points of discrete systems is given, and the local stability of fixed points is given by characteristic root analysis. Second, we used the center manifold theorem and bifurcation theory to study the bifurcation of a codimension of one of the system at non-hyperbolic fixed points, including flip, transcritical, pitchfork, and fold bifurcations. Furthermore, this paper used the hybrid chaos method to control the chaos that occurs in the flip bifurcation of the system. Finally, the analysis conclusions were verified by numerical simulations. Compared with the continuous system, the similarities are that both species’ densities decrease with increasing Allee values under the weak Allee effect and that the host species hastens extinction under the strong Allee effect. Further, when the birth rate of the benefited species is low and the time is large enough, the benefited species will be locally asymptotically stabilized. Thus, our new finding is that both strong and weak Allee effects contribute to the stability of the benefited species under certain conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call