Abstract

We study simple stochastic scenarios, based on birth-and-death Markovian processes, that describe populations with the Allee effect, to account for the role of demographic stochasticity. In the mean-field deterministic limit we recover well-known deterministic evolution equations widely employed in population ecology. The mean time to extinction is in general obtained by the Wentzel-Kramers-Brillouin (WKB) approximation for populations with the strong and weak Allee effects. An exact solution for the mean time to extinction can be found via a recursive equation for special cases of the stochastic dynamics. We study the conditions for the validity of the WKB solution and analyze the boundary between the weak and strong Allee effect by comparing exact solutions with numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.