Abstract
DRAM is facing severe scalability challenges in sub-45nm tech- nology nodes due to precise charge placement and sensing hur- dles in deep-submicron geometries. Resistive memories, such as phase-change memory (PCM), already scale well beyond DRAM and are a promising DRAM replacement. Unfortunately, PCM is write-limited, and current approaches to managing writes must de- commission pages of PCM when the first bit fails. This paper presents dynamically replicated memory (DRM), the first hardware and operating system interface designed for PCM that allows continued operation through graceful degradation when hard faults occur. DRM reuses memory pages that con- tain hard faults by dynamically forming pairs of complementary pages that act as a single page of storage. No changes are required to the processor cores, the cache hierarchy, or the operating sys- tem's page tables. By changing the memory controller, the TLBs, and the operating system to be DRM-aware, we can improve the lifetime of PCM by up to 40x over conventional error-detection techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.