Abstract

By patterning two graphene resonators on a SiO2/Si substrate, a dynamically controlled electromagnetically induced transparency (EIT) in the terahertz graphene metamaterial was numerically studied through tuning the structural parameter and Fermi energy of graphene. The calculated surface current distributions demonstrate that the distinct EIT window in the graphene metamaterial results from the near-field coupling of two graphene resonators. Moreover, the EIT window can be actively controlled by tuning Fermi energy combined states of two resonators. When the Fermi energy combined state of two resonators changes from (0.21 and 0.16 eV) to (0.4 and 0.11 eV), the amplitude modulation depth of the EIT peak is 97.8% at 0.45 THz, and the corresponding enhanced factor of group delay with 6 times is obtained. This study offers an alternative tuning method to existing optical, thermal, and relative distance tuning, delivering a promising potential for designing active and miniaturized THz devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.