Abstract

AbstractTerahertz (THz) electromagnetic interference (EMI) shielding materials is crucial for ensuring THz electromagnetic protection and information confidentiality technology. Here, it is demonstrated that high electrical conductivity and strong absorption of THz electromagnetic radiation by type‐II Dirac semimetal PdTe2 film make it a promising material for EMI shielding. Compared to MXene film, a commonly used metallic 2D material, the PdTe2 film demonstrates a remarkable 40.36% increase in average EMI shielding efficiency per unit thickness within a broadband THz frequency range. Furthermore, it is demonstrated that a photoinduced long life‐time THz transparency in Dirac semimetal PdTe2 films is attributed to the formation of small polarons due to the strong electron‐phonon coupling. A 15 nm‐thick PdTe2 film exhibits a photoinduced change of EMI SE of 1.1 dB, a value exceeding three times that measured on MXene film with a similar pump fluence. This work provides insights into the fundamental photocarrier properties in type‐II Dirac semimetals that are essential for designing advanced THz optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.