Abstract

We study the stability and dynamic transition of a rotating electrically conducting fluid layer in the presence of an external magnetic field based on the Boussinesq approximation. By analyzing the spectrum of the linear part of the model and verifying the validity of the principle of exchange of stability, we take a hybrid approach combining theoretical analysis with numerical computation to study the transition from a simple real eigenvalue, a pair of complex conjugate eigenvalues and a real eigenvalue of multiplicity two, respectively. The center manifold reduction theory is applied to reduce the infinite dimensional system to the corresponding finite dimensional one together with several non-dimensional transition numbers that determine the dynamic transition types. Careful numerical computations are performed to determine these transition numbers as well as related flow patterns. Our results indicate that both continuous and jump transitions can occur at certain parameter region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.