Abstract
Random substitutions are a natural generalisation of their classical ‘deterministic’ counterpart, whereby at every step of iterating the substitution, instead of replacing a letter with a predetermined word, every letter is independently replaced by a word from a finite set of possible words according to a probability distribution. We discuss the subshifts associated with such substitutions and explore the dynamical and ergodic properties of these systems in order to establish the groundwork for their systematic study. Among other results, we show under reasonable conditions that such systems are topologically transitive, have either empty or dense sets of periodic points, have dense sets of linearly repetitive elements, are rarely strictly ergodic, and have positive topological entropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.