Abstract

In this paper we study chaotic behavior of actions of a countable discrete group acting on a compact metric space by self-homeomorphisms. For actions of a countable discrete group G, we introduce local weak mixing and Li-Yorke chaos; and prove that local weak mixing implies Li-Yorke chaos if G is infinite, and positive topological entropy implies local weak mixing if G is an infinite countable discrete amenable group. Moreover, when considering a shift of finite type for actions of an infinite countable amenable group G, if the action has positive topological entropy then its homoclinic equivalence relation is non-trivial, and the converse holds true if additionally G is residually finite and the action contains a dense set of periodic points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call