Abstract
Relation between species and their livelihood environment in ecological systems is very complex. For that reason, in order to study predator-prey relations, modeling is essential in biomathematics. The vital components of predator-prey models are prey species' growth function in the absence of apredator and the functional response. In this article, we proposed a predator-prey model with gregarious prey. In the existing literature, square-root functional response incorporates the gregarious behavior of prey. This study considers the generalized square root functional response and theta-logistic growth of prey in the absence of a predator. The effect of functional response parameters on stability, limit cycle, and Hopf bifurcation on the proposed model has been discussed. Numerical analysis is performed on the basis of some hypothetical parameter values to analyze the model numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.