Abstract

In this article, we use the results of finite-element analysis (FEA) of temperature distribution, deformation, and stress to provide a full three-dimensional simulation of a dynamically stable cavity by propagating wavefront into hot, thermally deformed Yb:YAG/YAG thin-disk laser, using the fast Fourier transform (FFT) split-step beam propagation method (BPM). The wave optics computation therefore delivers realistic results for important features of a laser-like intensity, phase profile, and resonator eigenvalues and higher order-eigenmodes of the laser beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.