Abstract
The two-dimensional thickness profile of a phase object can be measured by phase microscopy by assuming that the light passes straight through the sample such that the measured phase profile is proportional to the thickness of the sample. However, any non-uniform index structure in a sample bends the straight light path by refraction and diffracts the non-uniform transverse phase structure of the wavefront along the propagation path within a sample. We investigated the consequence of these two effects within a phase object using a split-step beam propagation method that considers beam paths through a 3-μm-diameter bead sample. Our simulation results show that the phase profile of light just after passing through a sample differs significantly from an ideal phase profile. We verified these simulation results by comparing them with experimental data obtained with a Mach–Zehnder interferometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.