Abstract

PurposeHigh-rise tower structures supported by side frame structure and viscous damper in chemical industry can produce plasticity under dynamic loads, such as wind and earthquake, which will heavily influence the long-term safety operation. This paper aims to systematically study the optimization design of these structures by free vibration and dynamic shakedown analysis.Design/methodology/approachThe transfer matrix method and Euler–Bernoulli beam vibration are used to study the free vibration characteristic of the simplified high-rise tower structure. Then the extended stress compensation method is used to construct the self-equilibrated stress by using the dynamic load vertexes and the lower bound dynamic shakedown analysis for the structure with viscous damper. Using the proposed method, comprehensive parametric studies and optimization are performed to examine the shakedown load of high-rise tower with various supported conditions.FindingsThe numerical results show that the supported frame stiffness, attached damper or spring parameters influence the free vibration and shakedown characters of high-rise tower very much. The dynamic shakedown load is lowered down quickly with external load frequency increasing to the fundamental natural frequency of the structure under spring supported condition, while changed little with the damping connection. The optimized location and parameter of support are obtained under dynamical excitations.Research limitations/implicationsIn this study, the high-rise tower structure is simplified as a cantilever beam supported by a short cantilever beam and a damper under repeated dynamic load, and linear elasticity for solid is assumed for free vibration analysis. The current analysis does not account for effects such as large deformation, stochastic external load and nonlinear vibration conditions which will inevitably be encountered and affect the load capacity.Originality/valueThis study provides a comprehensive method for the dynamical optimization of high-rise tower structure by combining free vibration and shakedown analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.