Abstract

In this paper, we investigate the dynamical quantum phase transitions appearing in the Loschmidt echo and the time-dependent order parameter of a quantum system of harmonically coupled degenerate bosons as a function of the power-law decay $\sigma$ of long-range interactions. Following a sudden quench, the nonequilibrium dynamics of this system are governed by a set of nonlinear coupled Ermakov equations. To solve them, we develop an analytical approximation valid at late times. Based on this approximation, we show that the emergence of a dynamical quantum phase transition hinges on the generation of a finite mass gap following the quench, starting from a massless initial state. In general, we can define two distinct dynamical phases characterized by the finiteness of the post-quench mass gap. The Loschmidt echo exhibits periodical nonanalytic cusps whenever the initial state has a vanishing mass gap and the final state has a finite mass gap. These cusps are shown to coincide with the maxima of the time-dependent long-range correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.