Abstract

The cooperation between non-Hermiticity and interaction brings about a lot of counterintuitive behaviors, which are impossible to exist in the framework of the Hermitian system. We study the effect of a non-Hermitian impurity on the Hubbard model in the context of $\ensuremath{\eta}$ symmetry. We show that the non-Hermitian Hubbard Hamiltonian can respect a full real spectrum even if a local non-Hermitian impurity is applied to. The balance between dissipation of single fermion and on-site pair fluctuation results in a highest-order coalescing state with off-diagonal long-range order (ODLRO). Based on the characteristic of high-order EP, the critical non-Hermitian Hubbard model allows the generation of such a steady superconducting-like state through the time evolution from an arbitrary initial state, including the vacuum state. Remarkably, this dynamic scheme is insensitive to the on-site interaction and entirely independent of the locations of particle dissipation and pair fluctuation. Our results lay the groundwork for the dynamical generation of a steady ODLRO state through the critical non-Hermitian strongly correlated system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.