Abstract

Polynomial chaos expansions (PCE) allow us to propagate uncertainties in the coefficients of differential equations to the statistics of their solutions. Their main advantage is that they replace stochastic equations by systems of deterministic equations. Their main challenge is that the computational cost becomes prohibitive when the dimension of the parameters modeling the stochasticity is even moderately large. We propose a generalization of the PCE framework that allows us to keep this dimension as small as possible in favorable situations. For instance, in the setting of stochastic differential equations (SDEs) with Markov random forcing, we expect the future evolution to depend on the present solution and the future stochastic variables. We present a restart procedure that precisely allows PCE to depend only on that information. The computational difficulty then becomes the construction of orthogonal polynomials for dynamically evolving measures. We present theoretical results of convergence for our...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.