Abstract

We investigate the periodic Anderson model with $\bm{k}$-dependent $c$-$f$ mixing reproducing the point nodes of the hybridization gap by using the dynamical mean-field theory combined with the exact diagonalization method. At low temperature below a coherence temperature $T_0$, the imaginary part of the self-energy is found to be proportional to $T^2$ and the pseudogap with two characteristic energies $\tilde{\it \Delta}_1$ and $\tilde{\it \Delta}_2$ is clearly observed for $T\ll T_0$, while the pseudogap is smeared with increasing $T$ and then disappears at high temperature $T \simg T_0$ due to the evolution of the imaginary self-energy. When the Coulomb interaction between $f$ electrons $U$ increases, $\tilde{\it \Delta}_1$, $\tilde{\it \Delta}_2$, and $T_0$ together with $T_{\rm max}$ at which the magnetic susceptibility is maximum decrease in proportion to the renormalization factor $Z$ resulting in a heavy-fermion semiconductor with a large mass enhancement $m^*/m=Z^{-1}$ for large $U$. We also examine the effect of the external magnetic field $H$ and find that the magnetization $M$ shows two metamagnetic anomalies $H_1$ and $H_2$ corresponding to $\tilde{\it \Delta}_1$ and $\tilde{\it \Delta}_2$ which are reduced due to the effect of $H$ together with $Z$. Remarkably, $Z^{-1}$ is found to be largely enhanced due to $H$ especially for $H_1 \siml H \siml H_2$, where the field induced heavy-fermion state is realized. The obtained results seem to be consistent with the experimental results observed in the anisotropic Kondo semiconductors such as CeNiSn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.