Abstract

We develop a theory of collective mode dynamics in the helical magnets coupled to electric polarization via spin-orbit interaction. The low-lying modes associated with the ferroelectricity are not the transverse optical phonons, but are the spin waves hybridized with the electric polarization. This hybridization leads to the Drude-like dielectric function epsilon(omega) in the limit of zero magnetic anisotropy. There are two additional low-lying modes: phason of the spiral and rotation of helical plane along the polarization axis. Role of these low-lying modes in the neutron scattering and antiferromagnetic resonance is revealed, and a novel experiment to detect the dynamical magnetoelectric coupling is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call