Abstract

AbstractFracture in ice Ih is simulated with molecular dynamics utilizing two potential fields, TIP4P/Ice and mW, and in different temperature conditions. The simulations produce propagating crack speeds over a large range of fracture energies. Terminal crack speed simulated with TIP4P/Ice potential can reach more than 200 m/s befitting experimental results. On the other hand, for mW potential, crack speed is around 5 m/s. The TIP4P/ice model suggests a brittle ice while mW potential describes a much more ductile material. The computational simulations are designed to permit direct comparison with experiments which can be performed in the hereafter. This comparison could provide a sensitive test to interatomic potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.