Abstract
Hyperbolic tangent function, a bounded monotone differentiable function, is usually taken as a neuron activation function, whose activation gradient, i.e. gain scaling parameter, can reflect the response speed in the neuronal electrical activities. However, the previously published literatures have not yet paid attention to the dynamical effects of the neuron activation gradient on Hopfield neural network (HNN). Taking the neuron activation gradient as an adjustable control parameter, dynamical behaviors with the variation of the control parameter are investigated through stability analyses of the equilibrium states, numerical analyses of the mathematical model, and experimental measurements on a hardware level. The results demonstrate that complex dynamical behaviors associated with the neuron activation gradient emerge in the HNN model, including coexisting limit cycle oscillations, coexisting chaotic spiral attractors, chaotic double scrolls, forward and reverse period-doubling cascades, and crisis scenarios, which are effectively confirmed by neuron activation gradient-dependent local attraction basins and parameter-space plots as well. Additionally, the experimentally measured results have nice consistency to numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.