Abstract

A molecular formalism based on a decomposed energy space constructed by a modular basis of matter and radiation is proposed for relativistic quantum mechanics. In the proposed formalism, matter radiation interactions are incorporated via the dynamical transformation of the coupled particle/antiparticle pair in a multistate quantum mechanical framework. This picture generalizes relativistic quantum mechanics at minimal cost, unlike quantum field theories, and the relativistic energy–momentum relation is interpreted as energy transformations among different modules through a multistate Schrödinger equation. The application of two-state and four-state systems using a time-dependent Schrödinger equation with pair states as a basis leads to well-defined solutions equivalent to those obtained from the Klein–Gordon equation and the Dirac equation. In addition, the particle–antiparticle relationship is well manifested through a particle conjugation group. This work provides new insights into the underlying molecular mechanism of relativistic dynamics and the rational design of new pathways for energy transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call