Abstract

In this paper, we study a stochastic SIVS infectious disease model with the Ornstein-Uhlenbeck process and newborns with vaccination. First, we demonstrate the theoretical existence of a unique global positive solution in accordance with this model. Second, adequate conditions are inferred for the infectious disease to die out and persist. Then, by classic Lynapunov function method, the stochastic model is allowed to obtain the sufficient condition so that the stochastic model has a stationary distribution represents illness persistence in the absence of endemic equilibrium. Calculating the associated Fokker-Planck equations yields the precise expression of the probability density function for the linearized system surrounding the quasi-endemic equilibrium. In the end, the theoretical findings are shown by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.